Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta.

TitleHemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta.
Publication TypeJournal Article
Year of Publication2003
Authors, C Kleinstreuer, S Hyun, and GA Truskey
JournalJournal of Biomechanics
Volume36
Issue8
Start Page1185
Pagination1185 - 1196
Date Published08/2003
Abstract

Employing the rabbit's abdominal aorta as a suitable atherosclerotic model, transient three-dimensional blood flow simulations and monocyte deposition patterns were used to evaluate the following hypotheses: (i) simulation of monocyte transport through a model of the rabbit abdominal aorta yields cell deposition patterns similar to those seen in vivo, and (ii) those deposition patterns are correlated with hemodynamic wall parameters related to atherosclerosis. The deposition pattern traces a helical shape down the aorta with local elevation in monocyte adhesion around vessel branches. The cell deposition pattern was altered by an exercise waveform with fewer cells attaching in the upper abdominal aorta but more attaching around the renal orifices. Monocyte deposition was correlated with the wall shear stress gradient and the wall shear stress angle gradient. The wall stress gradient, the wall shear stress angle gradient and the normalized monocyte deposition fraction were correlated with the distribution of monocytes along the abdominal aorta and monocyte deposition is correlated with the measured distribution of monocytes around the major abdominal branches in the cholesterol-fed rabbit. These results suggest that the transport and deposition pattern of monocytes to arterial endothelium plays a significant role in the localization of lesions.

Short TitleJournal of Biomechanics