Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.

TitleEffect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.
Publication TypeJournal Article
Year of Publication2004
AuthorsChan, BP, Reichert, WM, and Truskey, GA
Start Page3951
Pagination3951 - 3961
Date Published08/2004

The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.

Short TitleBiomaterials